EICOSANOID
EICOSANOID
In biochemistry, eicosanoids (preferred IUPAC name icosanoids) are signaling molecules made by oxidation of twenty-carbon essential fatty acids, (EFAs) They exert complex control over many bodily systems, mainly in inflammation or immunity, and as messengers in the central nervous system. The networks of controls that depend upon eicosanoids are among the most complex in the human body.
Nomenclature
"Eicosanoid" (eicosa-, Greek for "twenty"; see icosahedron) is the collective term for oxygenated derivatives of three different 20-carbon essential fatty acids:
• Eicosapentaenoic acid (EPA),an ω-3 fatty acid with 5 double bonds;
• Arachidonic acid (AA), an ω-6 fatty acid, with 4 double bonds;
• Dihomo-gamma-linolenic acid (DGLA), an ω-6, with 3 double bonds.
Current usage limits the term to the leukotrienes (LT) and three types of prostanoids— prostaglandins (PG) prostacyclins (PGI), and thromboxanes (TX). This is the definition used in this article. However, several other classes can technically be termed eicosanoid, including the hepoxilins, resolvins, isofurans, isoprostanes, lipoxins, epilipoxins,epoxyeicosatrienoic acids (EETs) and endocannabinoids. LTs and prostanoids are sometimes termed 'classic eicosanoids' in contrast to the 'novel', 'eicosanoid-like' or 'nonclassic eicosanoids'.
A particular eicosanoid is denoted by a four-character abbreviation, composed of:
• Its two letter abbreviation (above),
• One A-B-C sequence-letter; and
• A subscript, indicating the number of double bonds
Examples are:
• The EPA-derived prostanoids have three double bonds, (e.g.PGG3, PGH3, PGI3, TXA3) while its leukotrienes have five, (LTB5).
• The AA-derived prostanoids have two double bonds, (e.g. PGG2, PGH2, PGI2, TXA2) while its leukotrienes have four, (LTB4).
Furthermore, stereochemistry may differ among the pathways, indicated by Greek letters, e.g. for (PGF2α).
Biosynthesis
Two families of enzymes catalyze fatty acid oxygenation to produce the eicosanoids:
• Cyclooxygenase, or COX, generates the prostanoids.
• Lipoxygenase, or LOX, in several forms. 5-lipoxygenase (5-LO) generates the leukotrienes.
Eicosanoids are not stored within cells, but are synthesized as required. They derive from the fatty acids that make up the cell membrane and nuclear membrane.
Eicosanoid biosynthesis begins when cell is activated by mechanical trauma, cytokines, growth factors or other stimuli. (The stimulus may even be an eicosanoid from a neighboring cell; the pathways are complex.) This triggers the release of a phospholipase at the cell membrane. The phospholipase travels to the nuclear membrane. There, the phospholipase catalyzes ester hydrolysis of phospholipid (by A2) or diacylglycerol (by phospholipase C). This frees a 20-carbon essential fatty acid. This hydrolysis appears to be the rate-determining step for eicosanoid formation.
The fatty acids may be released by any of several phospholipases. Of these, type IV cytosolic phospholipase A2(cPLA2) is the key actor, as cells lacking cPLA2 are generally devoid of eicosanoid synthesis. The phospholipase cPLA2 is specific for phospholipids that contain AA, EPA or GPLA at the SN2 position. Interestingly, cPLA2 may also release the lysophospholipid that becomes platelet-activating factor.
Peroxidation and reactive oxygen species
Next, the free fatty acid is oxygenated along any of several pathways; see the Pathways table. The eicosanoid pathways (via lipoxygenase or COX) add molecular oxygen (O2). Although the fatty acid is symmetric, the resulting eicosanoids are chiral; the oxidation proceeds with high stereospecificity. The oxidation of lipids is hazardous to cells, particularly when close to the nucleus. There are elaborate mechanisms to prevent unwanted oxidation. COX, the lipoxygenases and the phospholipases are tightly controlled—there are at least eight proteins activated to coordinate generation of leukotrienes. Several of these exist in multiple isoforms. Oxidation by either COX or lipoxygenase releases reactive oxygen species (ROS) and the initial products in eicosanoid generation are themselves highly reactive peroxides. LTA4 can form adducts with tissue DNA. Other reactions of lipoxygenases generate cellular damage; murine models implicate 15-lipoxygenase in the pathogenesis of atherosclerosis. The oxidation in eicosanoid generation is compartmentalized; this limits the peroxides' damage. The enzymes which are biosynthetic for eicosanoids (e.g. glutathione-Stransferases, epoxide hydrolases and carrier proteins) belong to families whose functions are largely involved with cellular detoxification. This suggests that eicosanoid signaling may have evolved from the detoxification of ROS. The cell must realize some benefit from generating lipid hydroperoxides close-by its nucleus. PGs and LTs may signal or regulate DNA-transcription there; LTB4 is ligand for PPARα.
Prostanoid pathways
Cyclooxygenase (COX) catalyzes the conversion of the free essential fatty acids to prostanoids by a two-step process. First, two molecules of O2 are added as two peroxide linkages, and a 5-member carbon ring is forged near the middle of the fatty acid chain. This forms the short-lived, unstable intermediate Prostaglandin G (PGG). Next, one of the peroxide linkages sheds a single oxygen, forming PGH.
All three classes of prostanoids originate from PGH. All have distinctive rings in the center of the molecule. They differ in their structures. The PGH compounds (parents to all the rest) have a 5-carbon ring, bridged by two oxygens (a peroxide.) As the example in Structures of Selected Eicosanoids figure shows, the derived prostaglandins contain a single, unsaturated 5-carbon ring. In prostacyclins, this ring is conjoined to another oxygen-containing ring. In thromboxanes the ring becomes a 6-member ring with one oxygen. The leukotrienes do not have rings. Several drugs lower inflammation by blocking prostanoid synthesis; see detail at Cyclooxygenase, Aspirin and NSAID.
Leukotriene pathways
The enzyme 5-lipoxygenase (5-LO) uses 5-lipoxygenase activating protein (FLAP) to convert arachidonic acid into 5hydroperoxyeicosatetraenoic acid (5-HPETE), which spontaneously reduces to 5-hydroxyeicosatetraenoic acid (5-HETE). The enzyme LTA synthase acts on 5-HPETE to convert it into leukotriene A4 (LTA4), which may be converted into LTB4 by the enzyme leukotriene A4 epoxide hydrolase. Eosinophils, mast cells, and alveolar macrophages use the enzyme leukotriene C4 synthase to conjugate glutathione with LTA4 to make LTC4, which is transported outside the cell, where a glutamic acid moiety is removed from it to make LTD4. The leukotriene LTD4 is then cleaved by dipeptidases to make LTE4. The leukotrienes LTC4, LTD4 and LTE4 all contain cysteine and are collectively known as the cysteinyl leukotrienes.
Function and pharmacology
Eicosanoids exert complex control over many bodily systems, mainly in inflammation or immunity, and as messengers in the central nervous system. They are found in most living things. In humans, eicosanoids are local hormones that are released by most cells, act on that same cell or nearby cells (i.e., they are autocrine and paracrine mediators), and then are rapidly inactivated.
Eicosanoids have a short half-life, ranging from seconds to minutes. Dietary antioxidants inhibit the generation of some inflammatory eicosanoids, e.g. trans-resveratrol against thromboxane and some leukotrienes. Most eicosanoid receptors are members of the G protein-coupled receptor superfamily; see the Receptors table or the article eicosanoid receptors.
Receptors: there are specific receptors for all eicosanoids
Leukotrienes:
CysLT1(cysteinyl leukotriene receptor type 1)
CysLT2(Cysteinyl leukotrienes receptor type 2)
BLT1(leukotriene B4 receptor)
Prostaglandins:
PGD2
PGE2 :
o EP1
o EP2
o EP3
o EP4
Prostacyclin
Thromboxane
The ω-3 and ω-6 series
Arachidonic acid (AA; 20:4 ω-6) sits at the head of the 'arachidonic acid cascade'—more than twenty different eicosanoid-mediated signaling paths controlling a wide array of cellular functions, especially those regulating inflammation, immunity and the central nervous system.
In the inflammatory response, two other groups of dietary essential fatty acids form cascades that parallel and compete with the arachidonic acid cascade. EPA (20:5 ω-3) provides the most important competing cascade. DGLA (20:3 ω-6) provides a third, less prominent cascade. These two parallel cascades soften the inflammatory effects of AA
and its products. Low dietary intake of these less-inflammatory essential fatty acids, especially the ω-3s, has been linked to several inflammation-related diseases, and perhaps some mental illnesses.
The U.S. National Institutes of Health and the National Library of Medicine state that there is 'A' level evidence that increased dietary ω-3 improves outcomes in hypertriglyceridemia, secondary cardiovascular disease prevention and hypertension. There is 'B' level evidence ('good scientific evidence') for increased dietary ω-3 in primary prevention of cardiovascular disease, rheumatoid arthritis and protection from ciclosporin toxicity in organ transplant patients. They also note more preliminary evidence showing that dietary ω-3 can ease symptoms in several psychiatric disorders.
Besides the influence on eicosanoids, dietary polyunsaturated fats modulate immune response through three other molecular mechanisms. They (a) alter membrane composition and function, including the composition of lipid rafts; (b) change cytokine biosynthesis and (c) directly activate gene transcription.Of these, the action on eicosanoids is the best explored.
Mechanisms of ω-3 action
The eicosanoids from AA generally promote inflammation. Those from EPA and from GLA (via DGLA) aregenerally less inflammatory, orinactive, or even antiinflammatory. The figure shows the ω-3 and -6 synthesis chains, along with the major eicosanoids from AA, EPA and DGLA. Dietary ω-3 and GLA counter the inflammatory effects of AA's eicosanoids in three ways, along the eicosanoid pathways:
• Displacement—Dietary ω-3 decreases tissue concentrations of AA, so there is less to form ω-6 eicosanoids.
• Competitive inhibition—DGLA and EPA compete with AA for access to the cyclooxygenase and lipoxygenase enzymes. So the presence of DGLA and EPA in tissues lowers the output of AA's eicosanoids. • Counteraction—Some DGLA and EPA derived eicosanoids counteract their AA derived counterparts.
Role in inflammation
Since antiquity, the cardinal signs of inflammation have been known as: calor (warmth), dolor (pain), tumor (swelling) and rubor (redness). The eicosanoids are involved with each of these signs.
Redness—An insect's sting will trigger the classic inflammatory response. Short acting vasoconstrictors — TXA2—are released quickly after the injury. The site may momentarily turn pale. Then TXA2 mediates the release of the vasodilators PGE2 and LTB4. The blood vessels engorge and the injury reddens.
Swelling—LTB4 makes the blood vessels more permeable. Plasma leaks out into the connective tissues, and they swell. The process also loses pro-inflammatory cytokines.
Pain—The cytokines increase COX-2 activity. This elevates levels of PGE2, sensitizing pain neurons.
Heat—PGE2 is also a potent pyretic agent. Aspirin and NSAIDS—drugs that block the COX pathways and stop prostanoid synthesis—limit fever or the heat of localized inflammation.
Pharmacy: Eicosanoid, eicosanoid analogs and receptor agonists/antagonists used as medicines
Action of prostanoids
Prostanoids mediate local symptoms of inflammation: vasoconstriction or vasodilation, coagulation, pain and fever. Inhibition of cyclooxygenase, specifically the inducible COX-2 isoform, is the hallmark of NSAIDs (non-steroidal anti-inflammatory drugs), such as aspirin. COX-2 is responsible for pain and inflammation, while COX-1 is responsible for platelet clotting actions. Prostanoids activate the PPARγ members of the steroid/thyroid family of nuclear hormone receptors, directly influencing gene transcription.
Action of leukotrienes
Leukotrienes play an important role in inflammation. There is a neuroendocrine role for LTC4 in luteinizing hormone secretion. LTB4 causes adhesion and chemotaxis of leukocytes and stimulates aggregation, enzyme release, and generation of superoxide in neutrophils. Blocking leukotriene receptors can play a role in the management of inflammatory diseases such as asthma (by the drugs montelukast and zafirlukast), psoriasis, and rheumatoid arthritis. The slow reacting substance of anaphylaxis comprises the cysteinyl leukotrienes. These have a clear role in pathophysiological conditions such as asthma, allergic rhinitis and other nasal allergies, and have been implicated in atherosclerosis and inflammatory gastrointestinal diseases.They are potent bronchoconstrictors, increase vascular permeability in postcapillary venules, and stimulate mucus secretion. They are released from the lung tissue of asthmatic subjects exposed to specific allergens and play a pathophysiological role in immediate hypersensitivity reactions. Along with PGD, they function in effector cell trafficking, antigen presentation, immune cell activation, matrix deposition, and fibrosis.
0 Comments
Thank you for your visit.
Please share with others....